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ABSTRACT

An inexpensive system for automatic measurement of microwave phase

shift is described. The system requires for its construction only

components that would be required if a manual system were used, plus a

servo loop. The phase is controlled by controlling the reflector vol-

tage on a klystron, which in turn controls the microwave frequency.

A description is given of a prototype system that was constructed

and tested. Measured results of phase shift as a function of control

voltage and attenuation are presented.

ii



CONTENTS

ABSTRACT ................... ..............................

LIST OF ILLUSTRATIONS .............. .................... iv

I INTRODUCTION .............. ....... ...................... 1

II BRIDGE SYSTEM ............. ....... ....................... 2

III EXPERIMENTAL RESULTS .......... ....... .................. 7

iii



ILLUSTRATIONS

Fig. l(a) Microwave System for Independent Measurement of
Attenuation and Phase Shift .................. 2

Fig. l(b) Vector Diagram of Voltages at Output Terminals of
the Magic Tee ......... ...................... 2

Fig. 2 Method of Introducing Control Voltage into the
Klystron Reflector Voltage Circuit ......... 6

Fig. 3 Microwave System for Automatic Measurement of
Attenuation and Phase Shift .................. 7

Fig. 4 Phase as a Function of Control Voltage for the
Automatic System ........ .................... .

(AL = 3 meters)

Fig. 5 Plot of Ratio of Plasma to Wave Frequency and
Ratio of Collision to Wave Frequency as a
Function of Normalized Attenuation in db/Radian
and Normalized Phase Shift in Degrees/Radian . . . 9

Fig. 6 Automatic System Using ac Amplifiers ...... ....... 10

ivj



I INTRODUCTION

In order to determine the electron density and collision frequency

of a plasma it is necessary to make two independent measurements. Very

often this is performed by measuring the absorption and phase shift,

at a single frequency, of an electromagnetic wave that is transmitted

through the plasma. By constructing a bridge circuit in which the plasma

is one arm and a calibrated phase shifter and calibrated attenuator are

another arm, a sensitive instrument for measuring absorption and phase

shift can be made. In this system, in order to null the bridge both

the attenuator and the phase shifter must be adjusted. Both components

must be adjusted before either the phase shift or attenuation of the

plasma can be determined. The phase shift cannot be found independent

of the attenuation.

In order to make such a system automatic, it would be necessary to

have two servo loops, one controlling the attenuator and another con-

trolling the phase shifter. An alternative system that does not require

an adjustment of both components is described below. This system has

the advantage that only one servo loop (on the phase shifter) is required.

Further, in a low-collision plasma, the electron density can be found

in terms of the phase shift alone. Thus, to determine the electron

density, only the phase shift need be measured.



II BRIDGE SYSTEM

The basic system is shown in Fig, l(a). A klystron oscillator

supplies microwave power which is divided in a directional coupler be-

tween a path that goes through the plasma (Path A) and a path that does
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IT ( XTAL
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RA-3977-21A
E2

FIG. 1(a) MICROWAVE SYSTEM FOR INDEPENDENT MEASUREMENT OF ATTENUATION
AND PHASE SHIFT

not (Path B). The two signals are recombined in a magic tee, As shown

in Fig. l(b), when the two signals are 90 degrees out of phase the re-

sultant fields in the crossed arms of the magic tee, 1E11 and 1E2 1, are

aB B

RA-3977-21

FIG. 1(b) VECTOR DIAGRAM OF VOLTAGES AT OUTPUT TERMINALS OF THE MAGIC TEE

equal. If the voltage difference between 1E I'and IE21 is m1 2monitored,

it will indicate when the input signals are in phase quadrature. When
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a plasma changes the phase along Path A, the phase shifter is adjusted

until IEI - E I = 0. The change in the phase shifter is equal to the
1 2

phase shift due to the plasma.

In this system the phase at which IE = IE I is independent of the
1 2

amplitude of the signals entering the magic tee along Paths A and B.

Thus, phase shift can be measured independent of attenuation. Attenuation

could be measured by monitoring the amplitude of the received signal by

a directional coupler in the receiving arm.

There are several ways that a voltage-controllable phase shifter

can be made. Ferrite phase shifters are commercially available, in which

the phase shift is changed by varying the current in an electromagnet.

However, this type of phase shifter has a hysteresis characteristic so

that the phase shift is a multiple-valued function of the current. For

a phase shifter with about 300 degrees of total phase shift the hysteresis

error could amount to about 30 degrees. Thus for a given value of current

the phase shift would be uncertain over a 30-degree range.

Traveling-wave-tube amplifiers have a phase-shift characteristic

which is a function of the helix voltage. Thus a traveling-wave-tube

amplifier can be used as a voltage-controllable phase shifter. The cost

of such a device makes it unattractive.

Voltage-controlled crystal phase shifters have been designed and

are commercially available in the lower microwave frequencies; however,

the cost of these devices at X-band is still high, especially if a large

phase shift is required.

A novel, inexpensive way of achieving a voltage-controllable phase

shifter using only components that would be necessary for a manual system

has been developed. Its operation is as follows. If a signal at fre-

quency f1 propagates down a transmission line of length L1 with a wave-

length of Xgl, the total phase shift down the transmission line is

2W/XgI L . The total phase shift down a length of line L2 is 2n/XgI L2.

The difference in phase, A ý, between the signals traveling down L and

L2 is 2r/X g (L - L 2). If the frequency is changed, the guide wavelength,
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and hence A 6, changes. Thus, by changing the frequency the differential

phase shift can be changed. If L 1- L2 is many wavelengths long a small

change in frequency will result in a large change in differential phase.

If L and L are the lengths of transmission line in Paths A and B,

1 2
the phase difference between the signals from A and B at the magic tee

will be

2 (L - L2) + @ + @
X 1 2 c a

gl

where c = Phase-shifter settingc

a = Phase shift across the transmission path between the antennas.a

When c is adjusted sothatA§ = 900, 1E11 - 1E2 1 = 0. If a plasma

changes §a so that A § is other than 900, then A • can be made equal to

900 by changing the frequency.

The amount of phase shift for a given frequency change can be cal-

culated as follows. The differential phase shift at the two frequencies

is given by

For a TE mode in a rectangular waveguide, the guide wavelength is

g = .1)

where

xgI = Guide wavelength

f = Frequency

c = Velocity of light

a = Waveguide width.
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For small frequency changes, an approximate expression for the

difference in wavelength may be found. Inserting this value in the

expression for the differential phase we obtain

L L -7(a

where
S=A�f/c

Af the change in frequency.

For example, a frequency change of 10 Mc at a frequency of 10 Gc will

result in a phase change of 16.3 degrees/meter.

It is true that the plasma is dispersive so that the phase shift

produced by it will also be frequency-dependent. However, the rate of

change of phase constant through the plasma is of the same order as for

a waveguide, so that if the plasma length is made much smaller than

(L1 - L2 ), the dispersive effect of the plasma will be negligible.

This method of obtaining a controllable phase shift could be used

as follows. Assume the system is balanced before the plasma is intro-

duced. Then, if the plasma introduces a phase change, E 1 ý E 2 . This

voltage difference can serve as an error signal to drive a feedback

amplifier, which in turn can be used to change the frequency. As the

frequency changes, E1 - E- 0. For sufficiently high loop gain,

E - E will be driven very close to zero.
1 2

The next question to consider is how to use this error signal to

change the klystron frequency. The frequency can be changed by varying

either the beam or reflector voltages. The reflector circuit draws

practically zero current so that an external voltage applied in the

reflector voltage line will not need to supply current. The reflector

is several hundred volts above ground so that introducing the error

signal into the circuit would raise the crystals to a high potential

above ground, introducing dangerous voltages into the waveguide system.
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This danger can be avoided by supplying the reflector voltage from a

separate battery supply. The error signal can then be introduced at

the ground side of the supply and thus be at low potential. The current

drain on the batteries will be very small. The circuit is shown in

Fig. 2.

KLYSTRON

REFLECTOR

CAVITY

CATHODE

CONTROL SIGNAL

RA-3977-23

FIG. 2 METHOD OF INTRODUCING CONTROL VOLTAGE INTO THE
KLYSTRON REFLECTOR VOLTAGE CIRCUIT
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III EXPERIMENTAL RESULT

A phase-measuring system working in this manner has been constructed

and tested. The over-all system is shown in the schematic diagram of

Fig. 3. The voltage out of the dc amplifier raises and lowers the total

reflector voltage, thus changing the frequency. By measuring V1 as a

function of , the system can be calibrated in phase in terms of voltage.

F'• XTAL

DETECTOR V

DETECTOR

RA -3977-24

FIG. 3 MICROWAVE SYSTEM FOR AUTOMATIC MEASUREMENT OF

ATTENUATION' AND PHASE SHIFT

The attenuation is measured by the drop in the level of V2. The results

for phase as a function of voltage are shown in Fig. 4. Since the loop

gain is finite, the ability of the control system to drive E1 - E2 to

a null depends to some degree upon the levels of the signals along Paths

A and B. As the attenuation in Path A is increased, the value of V for

a given @ varies somewhat. This variation is illustrated in Fig. 4 for

0, 6, and 10 db attenuation.

If the 0-db calibration curve were used when there was actually 6

db of attenuation, the inferred phase would be in error by about 6

degrees. In fact, up to 15 db attenuation the calibration curves shift

about 1 degree/db of attenuation. Of course, the attenuation is measured

7
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FIG. 4 PHASE AS A FUNCTION OF CONTROL VOLTAGE FOR THE
AUTOMATIC SYSTEM (AL = 3 meters)

simultaneously so that the shift in calibration curve can be corrected

for. Even so, when the plasma produces changes in Path A that are

greater than 1 degree/db the shift would be negligible.

The range of plasma parameters for which the plasma produces 10

degrees/db can be found from Fig. 5. This chart is useful for micro-

wave diagnostic problems. It presents the normalized plasma parameters

in terms of the measured parameters, attenuation and phase shift, nor-

malized to the electrical length of the plasma. P is the normalized

phase shift in degrees per radian of path length. A is the normalized

attenuation in db per radian. When P = 10A, the plasma will produce

10 degrees/db for any plasma length. From the chart it can be determined

8!
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that P > 10A for Z < 0,6 for all w /w up to about 0.75, Thus, plasma
p

parameters that are to the left of the Z = 0.6 line will give accurate

readings with this phase-measuring instrument, without correction for

attenuation.

The time response of this instrument is limited by the bandwidth

of the dc amplifier (about 50 cycles). Although wider-band dc amplifiers

could be used they are costly. Wideband ac amplifiers are more easily

available. Thus, if we could generate an error signal as an ac signal,

amplify it through an ac amplifier, and detect and smooth the output

before applying it to the reflector, we could increase the bandwidth

of the system. This could be done by introducing a microwave switch

so that E1 and E2 were sampled periodically. If they were different,

an ac signal would result. If they were equal, the ac signal would be

zero. Such a system is sketched in Fig, 6.

EV 2

MICROWAVE SWITCH

XTAL DETECTOR

-- • DETECTOR

SMOOT H ING

NA-3977-22

FIG. 6 AUTOMATIC SYSTEM USING ac AMPLIFIERS
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This system would also have the advantage of eliminating the need

for matched crystal detectors. The detection is by a single crystal

detector. This could be an important consideration if the system were

to be used to measure large attenuations, since it may be difficult to

get crystals that are matched over a wide range of signal levels.

One other problem that has not been mentioned is that when the re-

flector voltage is varied, the power output changes. This can amount to

several decibels for large frequency shifts. If the attenuation is small,

this could mask the true value of the attenuation. In order to eliminate

this error the servo loop could be periodically opened. Under this con-

dition the klystron would be transmitting at the same frequency and with

the same power output regardless of the plasma shift. However, this

error is less than the 1 degree/db due to the servo system, so that if

that error is tolerable this effect will be negligible for measurements

of phase shift.
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